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Steady and oscillatory thermocapillary convection in liquid 
columns with free cylindrical surface 
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I. Physikalisches Institut, Justus-Liebig-Universitat, Heinrich-Buff-Ring 16, 

D-6300 Giessen, W. Germany 

(Received 8 September 1981 and in revised form 30 June 1982) 

I n  liquid columns (Prandtl number 8.9) with free cylindrical surface heated from 
above, strong thermocapillary convection (TC) has been observed. Stationary 
thermocapillary convection exists in the form of a single axially symmetric roll bound 
to the free surface. For aspect ratios l / a  < 1 the radial extension of the roll equals 
the zone length. The stream velocities and the temperature distribution were 
measured. 

The influence of buoyant forces due to horizontal temperature gradients in the 
experiments was also studied. Buoyant forces become obvious for a contaminated 
free surface and in bulk regions far from the cylinder surface. 

The thermocapillary convection shows a transition to time-dependent oscillatory 
motion when a critical Marangoni number Ma, is exceeded. A unique Ma, = 7 x lo3 
has been found for zones with lengths 1 < 3.5 mm. The oscilIatory state of thermo- 
capillary convection has experimentally been proved to be a distortion of the laminar 
state in form of a wave travelling in the azimuthal direction. A unique non- 
dimensional wavenumber x 2.2 (near Ma,) of the distortion has been found. The 
non-dimensional frequency of the temperature oscillations is independent of zone size 
if the aspect ratio is held constant. However, the non-dimensional frequency of 
temperature oscillations increases linearly with the aspect ratio of the zone. This 
result is interpreted as a dependence of the phase velocity of the running disturbance 
on the aspect ratio. 

1. Introduction 
The presence of an unbalanced surface-tension gradient in the free surface between 

a liquid and a gaseous phase will influence the motion of these media. Since the surface 
tension depends significantly on temperature, temperature gradients along the 
surface drive a flow, because gradients of surface tension act like shear stress on the 
adjoining bulk fluids. If the surface-tension gradient is maintained by sources and 
sinks of heat, a perpetual surface flow is generated from regions of low surface tension 
to regions of higher surface tension or existing flows are continuously influenced. A 
lot of previous work has been concerned with Marangoni convection in thin films 
where the temperature gradient is applied perpendicular to the free surface. It is now 
known that thermally stimulated surface-tension gradients cause the hexagonal flow 
pattern (B6nard’s original experiment) in liquid layers with free upper surface 
subjected to destabilizing density gradients. Experiments of Block (1956) and 
theoretical investigations of Scriven & Sternling (1964), Pearson (1958), Nield (1964) 
and Smith (1966) have confirmed the important role of Marangoni convection for 
cellular buoyant convection. In  contrast, flows driven by a temperature gradient 
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aligned parallel to the free surface, which are called thermocapillary convection (TC), 
seem to have received less attention in hydrodynamics. However, continuous 
progress in the investigation of TC has been made in the theoretical works of Levich 
(1962), Birikh (1966) and Ostrach (1977) in two-dimensional configurations. These 
investigations have shown that,  in contrast to  Marangoni convection, TC sets in at 
any temperature gradient, however small it may be, and typically produces maximal 
flow speed in the free surface. Recent studies on TC have been triggered by the need 
in the materials-science field to elucidate the importance of TC in materials 
processing. Calculations by Chang & Wilcox (1976) and Clark & Wilcox (1980) 
demonstrated that TC dominates buoyant convection in cylindrical volumes up to 
1 cm3. Steady TC has been observed directly in small liquid volumes (radii up to 
10 mm, lengths up to  7 mm) of medium and high Prandtl number by Schwabe et al. 
(1978), Schwabe, Scharmann & Preisser (1979), Chun & Wuest (1978), and Ostrach 
and co-workers (S. Ostrach 1981 private communication). Furthermore, the interest 
in TC in floating zones is stimulated by the finding that is shows a transition into 
a time-dependent flow state (Schwabe et al. 1978; Chun & Wuest 1979) above a certain 
vertical temperature gradient (Schwabe & Scharmann 1979). 

The analysis of steady and time-dependent TC and its interactions with density- 
driven convection can be valuably applied to  alarge number of techniques in solid-state 
processing and physico-chemical engineering. Especially in crystal-growth methods 
of high technical importance, the existence of a free surface with a steep temperature 
gradient is inherent. Therefore TC can contribute to the mass and heat flows in these 
systems, as has been calculated by Langlois (1980,1981) and has recently been proved 
experimentally by Schwabe & Scharmann (1981). A review on Marangoni effects in 
crystal growth melts by Schwabe (1981 a )  gives further details and references. 

The relevance of time-dependent TC for crystal-growth processes is obvious, 
because i t  is well known that an unsteady flow in the liquid phase causes the 
quality of the growing crystal to deteriorate considerably. 

The importance of surface-tension-gradient-driven flows in melting technologies 
under reduced gravity has been discussed in detail, since there are possibilities of 
experiments in spacecraft. As density-driven convection will be of negligible influence 
in a microgravity environment, Marangoni convection and TC will provide a means 
of powerful convective mixing in melts with free surface. The existence of Marangoni 
convection in the form of cellular flow has already been demonstrated aboard the 
Apollo space vehicle (Grodzka & Bannister 1975). Studies of the features of TC are 
needed to prepare planned crystal-growth experiments in Spacelab. 

The present paper reports experimental data on laminar and time-dependent TC 
in floating zones of various lengths and diameters. 

2. Parameters, experimental apparatus and technique 
A zone is a cylindrical vertical column with radius a, height ( = length) I ,  and aspect 

ratio A = l /a .  For the description of results the origin of the cylindrical coordinates 
is placed in the centre of the bottom end face. 

The dimensionless radial and axial coordinates are defined as R = r / a  and 2 = z / l .  
AT’ is the applied temperature difference between the upper and lower solid 
boundary; 8 = (T- T,ower)/(Tupper - T,,,,,) = (T- T,,,,,)/AT is the non-dimen- 
sional temperature. As dimensionless number for TC in the zone the Marangoni 
number Ma is used 
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where awl&" is the temperature coefficient of surface tension, 7 the dynamic 
viscosity and x the thermal diffusivity. 

The experimental chamber is shown in figure 1 with some details not mentioned 
in the text. The chamber is axially symmetric except in the middle segment, which 
has four quartz windows. The upper and lower segments contain heating elements 
for applying different temperature gradients along the zone surface. Natural con- 
vection in the gas surrounding the zone and horizontal temperature gradients near the 
zone have been minimized. The graphite rods are made from graphite of highest 
thermal conductivity (h(graphite) = 1.70 x lo7 erg s-l cm-l K-l, type FE 534 from 
Schunk & Ebe) and are coated with pyrolytic graphite to prevent chemical reaction 
with the zone liquid and to reduce the wetting properties. The length of the zone 
can be varied continuously by movement of the upper heating element with a 
micrometer. To change tKe zone diameter, graphite rods with various diameters are 
screwed in the copper cylinders. 

Melting point T, 
Density p 
Coefficient of expansion dp /aT  
Surface tension (T 

Temperature coefficient of surface 
tension acr/aT 

Dynamic viscosity 7 
Kinematic viscosity v 
Thermal conductivity A 
Thermal diffusivity x 
Specific heat c p  
Prandtl number Pr 
Factor in Marangoni number 
lacrlaTl7-lx-l 

306.8 O C  

1.903 g 
-380 x 10-4 K-' 
119.7 dyn cm-l 
-5.5 x dyn cm-l K-l 

2.82 x g s-l cm-' 
1-48 x cm2 s-l 
5.71 x lo4 erg s-l cm-' K-I 
1-67 x om2 5-l 

1.80 x lo7 erg g-' K-l 
8.9 

1168 cm-' K-l 

TABLE 1. Physical properties of liquid NaNO, a t  320 OC (obtained from linear interpolation of dat,a 
given in Janz 1967; Landolt-Bornstein 1969, 1971 ; D'Ans-Lax 1964) 

The zone liquid is molten NaNO,. The relevant physical data are listed in table 1 .  
NaNO, is chemically stable up to approximately 400 O C  and the melt is fully trans- 
parent. The high-temperature coefficient of surface tension allows large Marangoni 
numbers. The medium Prandtl number is in the range of some crystal-growth melts 
of high technical importance and, by the high working temperature of the fluid, 
the thermal boundary conditions of melts are better simulated than with the usual 
oils. The experiments have shown the free surface to be insensitive to  normal 
contamination such as dust (except oil). The contact angle between pyrolytically 
coated graphite and liquid NaNO, is approximately 90' ; therefore zones with lengths 
under 4 mm have an  ideal cylindrical shape. Filling of a zone was made with a heated 
quartz syringe (pyrolytically coated with graphite). 

PID-controllers provided temperature control of the heating elements with an 
accuracy of f O 1  K. The absolute temperature of each graphite rod end face is 
measured within f 0.5 K by a thin NiCr-Ni thermocouple that is located 0.5 mm in 
front of the endface in a blind hole. 

Measurements are started after a thermalization time of 1-2 h. For changes of the 
temperature difference in the range of less than 10 K the thermalization time was 
5-10 min, which is long compared with the characteristic thermal diffusion time 
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12x z 100 s of a fluid zone with a typical length of 4 mm. In quasistatic experiments 
the temperature difference was increased linearly in time a t  a rate of 0.1 K min-' or 
less. 

An important problem is the production of defined temperature boundary con- 
ditions in the free surface. The existence of the applied vertical temperature gradient 
is ensured by the great difference in the thermal conductivities of graphite and sodium 
nitrate. However, the radial heat flux out of the zone surface into the ambient gas is 
not negligible, since the thermal conductivity of air is significant (h(air) x hh(NaN0,)) 
and heat radiation also contributes. In special experimental runs these radial 
temperature gradients have been minimized with a coaxial quartz tube with an 
inner diameter 4 mm larger than the zone diameter. The quartz tube was placed 
between the two graphite elements. As quartz and liquid NaNO, have similar thermal 
conductivities, the tube imposes the applied vertical temperature gradient on the zone 
surface. 

I n  the zone, laminar flows are axially symmetric. This three-dimensional flow 
pattern is optically reduced to  a two-dimensional one by a light-cut technique : a light 
band produced from a 5 mW He-Ne laser and some optics illuminates the zone in 
a vertical central section of 0.5 mm width only, and observations are made normal 
to it. The streamlines are indicated by trajectories of suspended particles (hollow 
quartz spheres, Eccospheres) with 0.01 mm average diameter. The streak lengths of 
the tracers and their motions have been used for streamline photographs and for most 
stream-velocity measurements. The observation of fluid motion in the zone interior 
is complicated because the zone liquid (refractive index n(NaN0,) = 1.46) acts as a 
cylinder lens itself and distorts the zone coordinates non-linearly. This was taken 
into account and corrected for all locations in the velocity and temperature 
measurements. 

The temperature distributions and temperature oscillations have been determined 
with thermocouples of a platinum-noble-metal alloy with 0.05 mm wire diameter and 
approximately spherical thermojunctions of 015 mm diameter. The thermocouples 
are inserted either through the zone surface or, for the sake of an undisturbed free 
surface shape and surface-tension gradient, through a small bore in the upper graphite 
rod. The time constant of these thermocouples can be estimated to be 0.02s. 
Confirmation of the thermocouple measurements of the surface temperature has been 
obtained with a non-contacting method using a highly focused high-speed bolometer 
(spatial resolution 1.0 mm) from Heimann. 

3. The stationary flow pattern, temperature distribution, and stream velocities 
I n  this section, typical features of time-independent TC and natural convection will 

be reported for zones with radius a = 3.0 mm and A close to unity. The zones are heated 
from, above to exclude buoyant convection in a vertical, unstable temperature 
gradient, Figure 2(a) shows the axially symmetric flow pattern of TC. The vertical 
surface-tension gradient drives a rapid surface flow (v, sz 12 mm s-l) from the upper 
to the lower graphite rod in a surface layer with thickness S x 0 6  mm. The typically 
sickle-shaped backflow from the lower to the upper rod in the bulk is recorded better, 
because the lens effect of the zone optically contracts peripheral regions. The 
maximum value of the surface velocity can be estimated to be four times that of the 
backflow speed. The corrected radial position of the roll axis is R = 0.85, indicating 
the driving force to be located in the free surface. 

Keeping the zone dimensions constant, the flow pattern of TC depends slightly on 
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((2) (b )  

FIGURE 2. (a )  Dominating TC in a zone with clean and free surface; heated from above ( 1  = 4.1 mm, 
a = 3.0 mm, AT = 10 K,  Mu = 4.8 x lo3, exposure time Q s). ( b )  Same thermal conditions and 
exposure time as in (a) ,  but  TC is suppressed by a viscous surface film. 

the Marangoni number. With increasing Ma the distance between vortex centre and 
surface decreases in accordance with the flow boundary-layer theory. The Prandtl 
relation has been confirmed quantitatively for TC by Schwabe (198lb).  Above a 
Marangoni number of the order of lo4, TC becomes oscillatory in space and in time; 
this will be discussed later. 

As the average temperature of the melt is 355 O C ,  the periphery of the zone is cooled, 
thus producing a temperature gradient between zone surface and zone axis. By 
eliminating the thermocapillary forces with a surface contamination, it has been 
confirmed that the contribution of buoyant forces to the observed flow is small 
(Schwabe, Scharmann & Preisser 1980, 1982). In  a further experiment the cooling 
conditions have been changed with a quartz cylinder placed between the heating rods 
and surrounding the zone. With free and clean surface, the flow speed of TC in the 
free surface remained z 12 mm s-l; with a contaminated surface, the flow speed of 
basic flow (BY) was urnax x 0.1 mm s-l, indicating that radial temperature gradients 
have become small. These experiments show that two driving mechanisms are 
simultaneously present in the zone. However, TC dominates the buoyant convection 
in the case of a free and uncontaminated surface. 

Measurements of the temperature distributions for dominating TC and for BE' 
confirm the results gained from the flow pattern (figures 3 and 4). The isotherms have 
been drawn according to a grid of 12 x 12 temperature measurements in a vertical 
half-section of the zone. The temperature boundary layers near the graphite rods have 
been measured in special experimental runs and are taken into consideration in a first 
approximation. 

A strong contribution of TC to heat transport can be seen in figure 3. The fast 
surface flow starting from the rim of the upper rod draws off the thermal boundary 
layer and bends the isotherms downwards, so that the surface is hotter than the 
interior. Near the middle of the zone the surface flow widens and penetrates into the 
bulk, thus bulging the isotherms. 

The isotherm pattern produced by overwhelming TC is in good qualitative 
agreement with calculations for TC in a horizontal container with similar aspect ratio 
(Babskiy, Sklovskaya & Sklovskiy 1975). TC typically bends the isotherms near the 
free surface, whereas the backflow does not affect the isotherms up to considerable 
Marangoni numbers. This asymmetry is a feature of the surface character of TC. The 
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I "  e = +0.6 
0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0-8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Dimensionless radial coordinate R Dimensionless radial coordinate R 

FIGURE 3. Isotherms in the vertical half of the zone shown in figure 2 (conditions as in figure 2 ) .  

influence of radiative cooling on TC has been taken into account theoretically in 
calculations by Chang, Wilcox & Lefever (1979) for the floating-zone crystal-growth 
technique of a high-melting-point material. They find similar behaviour of the radial 
temperature curves, and, in addition, the surface flow is directed slightly radially 
inwards. The temperature distribution has also been determined for higher Marangoni 
numbers (figure 4). When TC is oscillatory the time-averaged temperature has been 
taken a t  each measuring point. At Mu = 2 x lo4 the vigorous TC determines the 
temperature field completely. As is to be expected, the thermal boundary-layer 
gradients become steeper a t  the cold end and the surface isotherms are bent markedly 
downwards. 

One of the conclusions to be drawn from the temperature measurements is the fact 
that  buoyant forces are always significant compared with thermocapillary forces in 
a zone of this size. The stabilizing forces in heating from above (or destabilizing 
under heating from below and due to horizontal temperature gradients) are always 
present. They become small compared with thermocapillary forces for zone length 
1 < 4 m m .  

I n  figure 5 the radial velocity distribution of laminar TC is given a t  axial position 
2 = 0.68. The geometrical conditions and the Marangoni number allow correspond- 
ence with the previous figures. It is shown that the downward surface stream is 
restricted to a narrow boundary layer with a maximum flow speed of 12 mm s-l. 
Because of the optical distortion, measurements are difficult in the periphery of the 
zone, and the local resolution is limited there. 

The existence of a radial maximum of the speed of the backflow at R x 04 indicates 
that  TC is limited t o  a region near the free surface. The radial dimension of this region 
(called the penetration depth of TC) scales as the length of the zone. With increasing 
Mu the position of the backflow-speed maximum penetrates deeper into the interior. 
The smooth decrease towards the zone axis is due to  the combination of BF and TC 
that will be pointed out clearly in the discussion of figure 7 .  This velocity-distribution 
measurement is in agreement with data from a horizontal boat (Schwabe & 
Scharmann 1981). 

To study the kinematical behaviour of TC, its stream velocity was measured as 
a function of the applied temperature gradient along the surface and the Marangoni 
number. The axial stream velocity of TC is given in figure 6 for two different zone 
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0 " "  " " " '  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Dimensionless radial coordinate R 

FIQURE 4. Isotherms in a vertical half of the zone at higher Marangoni number; Z = 4 1  mm, 
a = 3.0 mm, Tupper-~ower = 40 K,  Ma = 1.9 x lo4. 

I .  
1 I I I \ , , I  - 

Dimensionless radial coordinate R 

FIGIJRE 5 .  Radial velocity distribution of TC at zone height z = 068; Z = 4 1  mm, a = 3-0 mm, 
AT = 10 K ,  Ma = 4.8 x lo3; dashed line indicates radial position of roll axis (point ofzero velocity). 

lengths. If the stream velocity is plotted versus the vertical temperature difference 
AT, the curves for both zone lengths coincide within the limits of error. The flow specd 
of TC in the experiments under consideration is proportional only to the temperature 
difference parallel to the free surface. If the zone length is constant, the measured 
stream velocity depends linearly on the Marangoni number, as can be seen in figure 
6 ( b ) .  The linear dependence on Ma seems to be a significant difference from buoyant 
convection, where the flow speed is related to the square root of the Rayleigh number. 
This proportionality over the one order of magnitude shows that the Marangoni 
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4 '  

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 
Marangoni number X 

FIGURE 6. Stream velocity of TC in the free surface (R = 1 ) ;  measurements performed between 
Z = 0 9  and Z = 0.6 in zones with a = 3.0 mm. 

number, as defined by ( l ) ,  is the appropriate non-dimensional quantity to describe 
TC in the present experiment, and that the influence of buoyant forces can be 
neglected in the surface flow when Ma 4 0. 

As can be seen in figure 6 by extrapolation of Ma -+ 0, the stream velocity does 
not vanish, as it should for AT + 0 if thermocapillary forces were acting alone. This 
is due to the heating conditions in this experiment : although AT between the graphite 
rods is adjusted to zero, temperature gradients along and normal to the surface are 
caused by radial cooling, thus driving combined TC and buoyant convection. 

Figure 7 shows the stream velocity of the upward backflow on the zone axis as 
a function of Marangoni number. In  the case of unaffected TC, its backflow speed 
is expected to be proportional also to AT, bemuse of continuity requirements. This 
is verified for large Ma, but for small Ma surprisingly the velocity is constant. The 
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FIGURE 7 .  Stream velocity at the axis (R = 0) of zones with a = 3.0 mm; measurements taken 
between 2 = 0 3 5  and 2 = 065. (Data for I = 4.3 m have been obtained with a laser-Doppler 
anemometer.) 

latter feature is caused by the radial cooling of the zone, because a t  small Mu the 
downward surface stream is not strong enough to  compensate for the radial heat flux. 
I n  a first approximation the resultant BF velocity is independent of the applied 
vertical temperature difference and dependent on the approximately constant lateral 
cooling conditions only. As indicated by the dashed line, the extrapolation of the 
stream velocity from higher Mu to Mu = 0 does give a zero value. This demonstrates 
that TC also dominates in the interior of zones with 6 mm diameter if Mu > lo4. 

4. The flow pattern in zones with aspect ratio < 1 

If the aspect ratio is reduced to values of the order of 0.1, the flow pattern changes 
drastically. As is demonstrated in figure 8 for a zone with A = 0.47, the TC roll 
(downward and upward flow) is confined to the zone periphery and in the interior 
an axially symmetric roll of BF merges with the TC-vortex. In  figure 8 ( a )  the 
exposure time was 4 s in order to show the motion of the inner BF-roll, whose velocity 
(vmat, rz 0.2 mm s-l) is one order of magnitude lower than the TC backflow speed. 
Therefore the TC stream pattern cannot be resolved spatially in the photograph and 
the vortex appears as a semicircular disk. Although the zone is heated from above, 
radial temperature gradients cannot be excluded in the bulk: a t  the axis the axial 
temperature profile is governed by conduction, whereas in the periphery the TC 
produces thermal boundary layers, as can be seen in figures 3 and 4. This resultant 
radial temperature gradient drives BF. It must be emphasized that the radial cooling 
of the zone surface, which gives rise to a contributory buoyant force (BF), as discussed 
above is almost eliminated by the TC flow in this experiment. The convective heat 
transport by TC itself maintains buoyant convection in the bulk, because it 
determines the thermal boundary conditions of the zone interior. 

Observations have shown that the overall flow pattern or the ratio of volumes 
occupied by TC and BF, respectively, depend on the aspect ratio. If A is decreased 
to smaller values in comparison with figure 8 ( a )  surface flow and backflow of TC are 
increasingly confined to a thin layer near the free surface. It has been found for 1 a 
that the radial penetration depth of TC is of the order of the length of the zone. 
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I / / / /  / / / / / / / / / / / / / / / / / / / ‘ A  
FIGURE 8. TC in the periphery and BF in the interior of a zone heated from above with A = 0.47, 

a = 100 mm, AT = 11 K ,  exposure time 4 s. (a )  Photograph, ( b )  sketch of the flow pattern. 

5. The oscillatory instability of TC 
5.1. Description of the flow pattern 

When a certain Marangoni number (critical Marangoni number Ma,) is exceeded, TC 
shows a transition to three-dimensional motion. The flow pattern becomes periodic 
in space and in time, so that this state has been named the oscillatory TC (Schwabe 
et al. 1978; Schwabe & Scharmann 1979; Chun & Wuest 1979). I n  figure 9 the 
streamlines of oscillatory TC on the zone surface and in a vertical section are sketched 
for a fixed time. The moment is depicted when the vortices (rolls) in the light cut 
have extreme positions (figure 9b). The vortex in one half of the zone section appears 
smaller than the oppositc vortex, and the centre of the smaller vortex is located nearer 
to the lower solid boundary. The larger vortex is characterized by a centre closer to 
the upper graphite rod. In  the light cut the time dependence is observed as periodical 
interchange of the shape of the vortices in the left and right parts of the zone. After 
one half of the oscillation period the left vortex (small) and the right vortex (large) 
have changed positions. In  the total view in figure 9(a) the time dependence is 
described with the movement of the branching streamline of opposite vortices. The 
branching streamline rotates with the oscillation frequency around the zone axis in 
the surface of a cone. While the features of the laminar TC roll are independent of 
the azimuthal angle, the oscillatory state at a fixed time is characterized by a 
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FIGITRE 9. Qualitative picture (at fixed time) of the oscillatory TC with mode number n = 1 (as 
in a zone with I = 5.0 mm, a = 3 mm). The distortion of the TC roll travels around the zone axis 
(direction of propagation arbitrary). ( a )  Streamlines in the surface (upper and lower graphite rod 
removed, branching streamline as broken line). ( b )  Flow pattern in the vertical light cut. 

sinusoidal distortion of the roll cross-section and the roll axis in azimuthal direction. 
The time dependence is caused by the propagation of this distortion around the zone 
axis. Therefore the instability is recorded as a flow oscillation in the fixed light cut 
or as a temperature oscillat,ion with a stationary themocouple. This appearance of 
instable TC has also been observed in liquid zones with Pr = 0.27 (Schwabe et al. 
(1979) and Pr = 7.1 (Chun & Wuest 1979). 

The symmetry of the zone makes the assumption plausible that only an integer 
number n of periodical roll distortions can develop on the circumference of the zone : 

nh = 2na, (2) 
when h is the real wavelength of the instability in the azimuthal direction. The integer 
n is called the mode number. In  our experiments it has been found that mode number 
and wavelength are a function of the aspect ratio. I n  figure 9 the flow pattern for 
the lowest modc n = 1 has been described, and it is demonstrated in a photograph 
of a vertical light cut in figure 10. If the aspect ratio is decreased by reduction of the 
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(a ) t b )  

FIGURE 10. Oscillatory TC with n = 1, recorded by the tracks of illuminated suspended particles 
in a zone with I = 5.4 mm, a = 3.0 mm (zone dimensions and mode correspond to figure 9). Time 
difference between (a )  and (b )  x 1 s (oscillation period 7 = 2.0 s ) :  the left and right vortex 
interchange their positions after one half of the period. 

FIGURE 11. Oscillatory TC with n = 2 in a zone with I = 3.5 mm, a = 3.0 mm. (a )  and ( b )  have been 
taken at a time interval of half of the oscillation period, showing the two extreme distortions of 
the TC roll (7 = 1.6 9). 

zone length, the mode n = 2 is observed for 0.8 5 A 5 1.3. The mode n = 2 is 
characterized by a synchronous pulsation of the roll cross-section in the light cut, 
as can be seen in the photographs in figure 11.  Higher modes were identified a t  
corresponding lower values of A with the aid of a stereo microscope: a fraction of 
the suspended particles is always trapped in the wavy axis of the inshtionary TC 
roll, so that the wavelength of the oscillation can be measured roughly when the zone 
surface is observed. I n  the lower part of figure 12, mode numbers for the fully 
developed instability a t  Ma = l.lMa, are given. A certain mode exists in a certain 
range of A ,  but for higher modes identification is difficult and sudden transitions to 
neighbouring modes can occur, which is indicated by the error bars. It is found that 
a t  constant zone radius the mode number increases with decreasing zone length. For 
zones of various diameters the modes depend on the aspect ratio in a unique way. In  
the upper part of figure 12 the product nA has been plotted. It gives the important 

(3) 
experimental result that  

nA x const z 2.2 ( A  < 1 )  
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FIGURE 12. (a) The product nA is a characteristic constant of the oscillatory TC which is 
independent of zone aspect ratio. nA is the dimensionless wavenumber K of the instability. ( b )  
Observed mode numbers of the developed instability a t  Ma = 1.1 Ma, in zones with different 
geometries. 

for all zones. Combination of ( 2 )  and (3) gives the result that the wavelength h of 
the oscillation is proportional to  1 and independent of a. The zone length 1 seems to 
be the only proper characteristic length in the description of oscillatory TC in zones 
with Is a:  It is convenient therefore to use a Marangoni number M a  - 1 for the 
description of oscillatory TC, as defined before. 

With the produce nA, a constant dimensionless entity for oscillatory TC has been 
found that provides a possibility of calculating mode numbers when A is given. The 
lneaning of this constant can easily be understood, if one takes into account that  the 
wavelength h of the oscillation scales with the length of the zone, so that the 
non-dimensional wavelength A is written 

Combining (2) and (4), the non-dimensional wavenumber K of the oscillatory TC a t  
Ma = l . lMa,  is determined to  be 

(5 )  K = 27~A-l = nla-1 = nA z 2.2.  

I n  all zones the unstable TC developed a wavy structure with this wavenumber. 
A peculiar problem concerns the mode transitions when the aspect ratio is changed, 

because there are intermediate ranges in A (continuous parameter) where either one 
mode (discrete parameter) or the other can exist. The oscillatory system seems to 
possess various degrees of freedom (penetration depth, azimuthal component of 
stream velocity) to lock into a main mode. The basic flow has also been recognized 
to be an important criterion for mode selection : a strong basic flow stabilizes the mode 
n = 1 down to smaller A ,  compared with the case of good radial thermal insulation. 

A = hl-1. (4) 
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Azimuthal distance 

FIGURE 13. Phase shift (in time) of the temperature oscillations in a zone with 
a = 3.0 mm, measured with two thermocouples. 

A dependence of K on the Marangoni number in a zone with constant A could not 
be detected within the experimental conditions. After a certain mode had established 
a t  Ma,, no mode transition was observed up to 5Ma,, although indications of 
frequency jumps and broadening of the spectrum occurred in the oscillation signal. 
The temperature oscillations coupled with the instability of the flow field are almost 
sinusoidal, which was indicated by the Fourier analysis showing a sharp main 
frequency with an amplitude orders of magnitude higher than its higher harmonics 
and the amplitude of noise (Preisser 1981 ; Schwabe, Preisser & Scharmann 1982; 
Schwabe, Scharmann & Preisser 1980, 1982). 

From the azimuthal phase difference of the temperature oscillations, the existence 
of the modes n = 1 and n = 2 and their characteristic property as running waves 
were verified. The phase shift was measured as a function of the azimuthal angle 
between the positions of one fixed and one azimuthally movable thermocouple, both 
positioned a t  the same radial and axial coordinates. As can be seen in figure 13, the 
phase difference increases linearly with the azimuthal angle, and equals 27r for the 
optically recognized mode n = 1, and 47r for n = 2. As the temperature oscillations 
are independent of the azimuth in their amplitude and their form of signal, a standing 
wave is excluded. 

However, the amplitude $3 varies spatially in every vertical ( r ,  2)-plane, as is shown 
in figure 14. The maximum amplitudes are detected in the backflow, and typically 
have peak-to-peak values of 10 % of the applied temperature difference. Surprisingly, 
the amplitudes are smaller in the surface flow, with a tendency to decrease towards 
the bottom boundary. This result makes it reasonable to assume that the oscillations 
have their origin mainly in the radial displacement of stream paths. The alternate 
motion of the back flow radially inwards and radially outwards produces the 
maximum temperature fluctuations, whereas the surface stream sticks to the zone 
surface. Measurements of the surface temperature with a non-contacting bolometer 
have shown temperature oscillations in the free surface with amplitudes of typically 
about 5 %  of the applied AT. 

A further possible interpretation of the temperature fluctuations is as circulating 
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FIGURE 14. Spatial variation of the oscillation amplitude in a vertical cross section of the oscillatory 
TC roll; I = 4.1 mm, a = 3.0 mm, AT = 40 K,  Ma = 1.9 x lo4; amplitude normalized with the 
vertical temperature difference AT. 

hot or cold spots that  are periodically released in boundary layers and are transferred 
by the convection roll, thus generating an oscillating temperature a t  a fixed point, 
According to this model the amplitude should be fairly constant in the downward 
or upward flow. However, figure 14 shows the maximal amplitude to be in the middle 
of the zone. Furthermore, a number of thorough measurements with two 
thermocouples at equal azimuthal angle have failed to  show an axial phase shift of 
temperature oscillation either in the surface stream or in the backflow. However, it 
cannot be excluded that thermal spots exist with amplitudes below the detection 
limit. They could distort the surface-tension gradient and thus cause the pulsations 
of the convection roll. Thermal oscillations in the free surface exist in any case, as 
shown by the bolometer measurement. Surface oscillations with the frequency of 
oscillatory TC are clearly shown in the light reflected by the free surface. 

Summarizing the observations and the previous measurements, the picture of the 
oscillatory TC is described as follows: the oscillation consists of a periodical radial 
and axial fluid motion throughout the length of the zone, suprimposed on the 
continuous convective motions, which lie approximately in vertical planes. Because 
of the surface boundary conditions only the radial displacement of the backflow in the 
bulk is clearly pronounced. I n  the backflow, oscillations are nearly in phase in every 
vertical section of the TC roll, and phase shifts occur in the azimuthal direction. The 
time dependence is caused by the propagation of the radial motion along the 
circumferential roll axis. I n  a more-detailed description of the oscillatory state some 
more experimental observations have to be included, e.g. that  temperature oscillations 
show a phase jump of .&r between downward and upward flow in a vertical plane near 
the lower solid rod, and that oscillatory azimuthal velocity components clearly exist 
in the surface flow and in the backflow. 

5.2 .  The onset of the instability 
The critical value for the transition from laminar TC to the oscillatory state has been 
determined for different zone sizes by measuring the onset of thermal oscillations. The 
vertical temperature difference is slowly raised linearly in time under quasistatic 
t,hermal conditions, and the increase of the amplitude $9 is recorded. Figure 15 shows 
a typical result of an experimental run: below a certain Ma, no oscillations occur, 
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FIGURE 15. Increase of the normalized amplitude of temperature oscillations in a zone with 
E = 4.6 mm and a = 3.0 mm. The functional dependence S AT-l = const x ( M ~ - M U , ) ~  is fitted to 
experimental values. The critical Marangoni number is obtained from the extrapolation of this 
function. 

at Ma, oscillations begin, and from 1*05Ma, the normalized amplitude grows 
continuously. The functional dependence of the amplitude on the Marangoni number 
in the range Ma < 1.5Ma, has been fitted with power functions of the form 

(6) SAT-' = const x (Ma-y)". 

I n  (6) the constant, y = Ma, and x are determined by a least-squares fit. The averaged 
value of the growth exponent x from a series of experiments with different zone 
lengths was found to be x z 05. Any explanation of the instability must take into 
consideration this growth exponent together with the linear dependence of the stream 
velocity on the Marangoni number. 

With the aid of the growth exponent 0.5 the critical Marangoni number was 
obtained by linear extrapolation of the amplitude to zero when the amplitude was 
plotted versus the square root of the Marangoni number. The critical Marangoni 
number in zones of widely varying geometry is given in figure 16. For zones with 
1s 3.5 mm i t  is a constant, as it has been indicated in preliminary work (Schwabe 
& Scharmann 1979), and Ma, turns out to be independent of the mode of the 
instability : Ma, = (7.4f 1.4) x lo3. 

Ma, is also independent of radius. 
The increase of Ma, with 1 in the longer zones is interpreted as stabilization due 

to radial temperature gradients, because the lateral heat flux into the environment 
of the zone increases with the zone length. The stabilizing influence of radial 
temperature gradients could clearly be verified in successive experiments with either 
a water-cooled tube, or an insulating quartz cylinder, surrounding the zone. For the 
same zone length the critical Marangoni number increased by - 10 yo in the case of 
strong radial cooling and decreased by - 10 Yo under radial thermal insulation, both 
values compared with the usual experimental conditions. The stabilizing tendency 
of BF is thought to be due to its influence on the vertical temperature gradient 
(decreasing it). Furthermore, BF reduces velocity gradients, because the body forces 
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FIGURE 16. Critical Marangoni number for the transition to the oscillatory flow 
state of TC in zones of different size. 

tend to widen the surface-flow layer and to enhance the radial penetration depth of 
the backflow. 

5.3.  Analysis of the temperature oscillations 

To get further information on the oscillatory state, the frequencies of the temperature 
fluctuations were measured as a function of zone length, radius and over-temperature 
AT or Marangoni number. The zone length has the determining influence on the 
frequency. As shown in figure 17, the frequencies increase strongly with decreasing 
zone length in a similar way for all radii, and the same tendency exists for constant 
length and decreasing radius. Previous rough determinations of the frequency de- 
pendence by Schwabe et al. (1978) are confirmed here. In  addition the curves have been 
fitted with power relations f = const x P, and the fit for zones with a = 3.0 mm is 
shown in figure 17. It was found that z x - 1.5, if the frequencies for 1 > 3.5 mm are 
considered with a weighting factor smaller than 1, because in long zones BF influences 
both Ma, and f .  

The non-dimensional frequency 
F = fXl-'Mad (7) 

has been found to be the most suitable to represent the experimental results for zones 
of different size (figure 18). The thermal diffusion times enters the expression for F 
because thermal effects should not be excluded a t  Pr = 8.9. Mad is chosen as a factor 
because for constant zone dimension the frequency f increases with Ma raised to a 
power between 0.5 and 1 ,  as mentioned below. The defined F is independent of the 
zone size, if the aspect ratio is constant (figure 18). The representation is valuable, 
because geometric parameters drop out completely for constant A (e.g. see A x 0-45 
in figure 18). However, the dimensionless frequency F still depends linearly on the 
aspect ratio. Since the wavenumber K has been found to be approximately constant, 
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FIGURE 17. Frequencies of temperature oscillations measured at Mu = l.liVfu, 
in zones of different size. 

this means that the dimensionless phase velocity V, = 2nFK-' for the travelling 
wave increases with A .  Since A = Kn-l, i t  follows that disturbances with higher mode 
numbers propagate slower than those with smaller n, even in the case of equal zone 
length. The decrease of the frequency and the phase velocity with A is thought to 
be due to variations of the averaged flow speed in the bulk because of two reasons: 

(i) with decreasing A ,  the ratio between the free surface and the horizontal 
boundaries also decreases, so that damping shear stress exerted by the rigid 
boundaries becomes more important ; 

(ii) in zones with A > 1,  the backflow is bounded by itself a t  the zone axis so that 
the axial back flow speed is enhanced. Thus a damping of the averaged fluid motion 
is expected for small A ,  which is recorded as a lower propagation speed. 

The dependence of the frequency on the Marangoni number under constant zone 
dimensions could not be obtained very accurately. The frequency increases with the 
Marangoni number raised to a power between 0.5 and 1 (Schwabe 1981 b) .  

6. Concluding remarks 
The previous experiments have shown that TC can be a strong convection 

phenomenon which dominates buoyancy-driven convection in volumes up to 
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FIGURE 18. Dimensionless frequencies F = f1'x-l Ma-$ at Ma = 1.1 Ma,. Right ordinate gives 
the propagation speed of the instability obtained by V, = 27rFK-', thus showing the existence 
of a dispersion relation in A .  

approximately 1 cm3. The flow pattern in zones with A x 0.1 exhibits an important 
property of TC and indicates the limits of TC for bigger volumes : as TC is a surface 
phenomenon, it will be confined to a region near the surface, whereas body forces 
determine fluid motion in bulk. 

Besides the magnitude of TC the existence of an oscillatory instability triggers the 
particular interest in TC. The toroidal roll cell undergoes defined and pronounced 
deformations, which are rather insensitive to preheating conditions and thermal 
disturbances in the ambient air and in the liquid itself (thermocouples). It seems that 
discrete wavenumbers of disturbances are selected out of the full spectrum of 
disturbances, because the convection roll is closed in the special zone geometry. 
Non-fitting disturbances are eliminated by destructive interference. The selection rule 
is given by the constraint that  the wavelength must be an aliquot of the zone 
circumference. However, the physical mechanism that amplifies and feeds the flow 
disturbance is still uncertain. Chun & Wuest (1979) claini the oscillations to be due 
to an overstable interaction between flow and temperature field in the surface of the 
zone. 

There are two different existing theoretical models that  can possibly be adopted 
for the qualitative description of oscillatory TC and can perhaps contribute to the 
understanding of its origin. On the one hand there is the theory for the oscillatory 
instability of convection rolls of Busse (1972) and Clever & Busse (1974), and on the 
other hand the instability of two-dimensional thermocapillary shear flow by Smith 
& Davis (1981). 

Since Busse's model should be valid for any field of two-dimensional vortices, 
attempts to draw analogies should be successful despite tjhe great differences in the 
boundary conditions and despite some particularities due to the action of surface- 
tension gradients. Following Busse, the oscillation of the TC roll can be interpreted 
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in a first approximation as a propagating periodical lateral shift of the axis of the 
undisturbed roll. As the roll sticks to  the zone surface, only the motion radially 
inwards is clearly observed as pulsations of the roll cross-section. The picture could 
explain why the maximum amplitude of temperature oscillations was found a t  
medium zone heights and why our attempts to identify vertically circulating thermals 
were fruitless, much in the same way as was found for oscillatory Rayleigh-BBnard 
convection by Willis & Deardorff (1970). With the aid of the frequency dependence 
(Busse 1972) the measured frequencies of oscillatory TC are reproduced when 
(Ra- Ra,)/Ra, in the expression for F is replaced by the Marangoni number Ma (as 
the Marangoni number for the onset of TC is zero, this simple substitution seems to 
be obvious). This gives (7) .  The linear dependence of the non-dimensional frequency 
on the aspect ratio, however, resembles a pecularity of TC in the zone: as the roll 
is closed, the instability is additionally coupled in the azimuthal direction by 
periodical distortion of the surface-tension gradient. If the TC roll is linear, e.g. in 
a zone with a = co, this coupling condition can be dropped and the frequency must 
become independent of A and depend on 1 as the sole geometrical parameter. Indeed, 
the extrapolation of the curve in figure 18 for A + 0 gives a constant non-dimensional 
frequency, which means that the zone length is the sole dimension determining the 
frequency in this limit. Discussing oscillatory TC within the framework of Russe’s 
analysis, i t  cannot be excluded that the finer details of oscillatory TC are due to 
azimuthal surface-tension gradients. The build up of oscillatory azimuthal tempera- 
ture gradients (and surface-tension gradients) is a direct consequence of the running 
wavy disturbance in the axial and radial velocity component. 

Very recently Smith & Davis (1981) have shown that thermocapillary convection 
in a trough becomes unstable to waves in the surface flow. Although there is some 
correspondence between the calculated critical Marangoni numbers and wavenumbers 
with the experimental findings in this work, i t  is not easy to reconstruct the 
osciIlatory flow pattern in the zone with this two-dimensional model. TC exhibits the 
wavy structure mainly in the azimuthal direction of the zone, which is topologically 
related to the direction not considered in this two-dimensional model. The possibility 
of a wave normal to the surface flow, propagating by oscillations of the surface flow 
itself, as observed in our experiment, should be investigated in this model. 

With an experiment in the German sounding rocket project TEXUS the authors of 
the present paper have proved that the oscillatory state of TC is a gravity-independent 
instability (Schwabe, Preisser & Scharmann 1982 ; Schwabe, Scharmann & Preisser 
1980,1982). Two transcritical Marangoni numbers (Ma = 1.6 x lo4 and 3.6 x lo4) were 
applied to a zone during the microgravity phase (10-4g) and the temperature 
oscillations due to oscillatory TC were recorded. The Fourier analysis showed that 
the same main frequency with the same higher harmonics and with the same 
amplitude ratios occurred as in the laboratory reference experiment. Overstable 
interactions of TC with buoyant convection or gravitational instationary boundary 
layers are excluded as the origin of oscillatory TC. 

This work represents part of the thesis of F .  Preisser a t  Giessen (1981, D26), and 
is dedicated to Professor Dr D. Hahn, PTB Braunschweig, on the occasion of his 
60th birthday. 
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